研究方向:
深度学习、AI模型量化、高性能AI推理技术
学术主页:
本人在CCF推荐的国内外期刊上以第一作者身份发表了多篇有影响力的学术期刊或会议,在Google Scholar上总共被引600+次,学术h-index指数为10,学术主页链接为:
https://scholar.google.com/citations?user=RkZtIzoAAAAJ&hl=en
学习与工作经历:
2020年6月 – 至今,在东莞理工学院负责科研和教学工作,包括自主发表科研论文、申报科研项目以及负责《机器视觉》、《Python深度学习》、《互联网思维》等课程的教学工作。
2014年9月 – 2020年6月,毕业于武汉大学计算机应用技术专业,博士课题方向是基于深度学习技术的用户画像建模方法研究。
科研成果:
1. Yiteng Pan, Fazhi He, Xiaohu Yan and Haoran Li, “A synchronized heterogeneous autoencoder with feature-level and label-level knowledge distillation for the recommendation”, Engineering Applications of Artificial Intelligence, 2021, 106: 104494.(IF:6.21)
2. Yiteng Pan, Fazhi He, Haiping Yu and Haoran Li, “Learning adaptive trust strength with user roles of truster and trustee for trust-aware recommender systems”, Applied Intelligence, 2020, 50(2): 314–327.(IF:5.09)
3. Yiteng Pan, Fazhi He and Haiping Yu, “Learning social representations with deep autoencoder for recommender system”, World Wide Web: Internet and Web Information Systems (WWWJ), 2020, 23(4): 2259–2279.(IF: 2.72)
4. Yiteng Pan, Fazhi He and Haiping Yu, “A Correlative Denoising Autoencoder to Model Social Influence for Top-N Recommender System”, Frontiers of Computer Science, 2020, 14(3): 143301.(IF:2.06)
5. Yiteng Pan, Fazhi He and Haiping Yu, “A novel Enhanced Collaborative Autoencoder with knowledge distillation for top-N recommender systems”, Neurocomputing, 2019, 332: 137–148.(IF:5.72)
6.潘一腾,何发智,于海平.一种基于信任关系隐含相似度的社会化推荐算法[J]. 计算机学报, 2018,41(01):65-81. (CCF A类中文期刊)